Learning Instance-Specific Predictive Models

نویسندگان

  • Shyam Visweswaran
  • Gregory F. Cooper
چکیده

This paper introduces a Bayesian algorithm for constructing predictive models from data that are optimized to predict a target variable well for a particular instance. This algorithm learns Markov blanket models, carries out Bayesian model averaging over a set of models to predict a target variable of the instance at hand, and employs an instance-specific heuristic to locate a set of suitable models to average over. We call this method the instance-specific Markov blanket (ISMB) algorithm. The ISMB algorithm was evaluated on 21 UCI data sets using five different performance measures and its performance was compared to that of several commonly used predictive algorithms, including nave Bayes, C4.5 decision tree, logistic regression, neural networks, k-Nearest Neighbor, Lazy Bayesian Rules, and AdaBoost. Over all the data sets, the ISMB algorithm performed better on average on all performance measures against all the comparison algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Instance-Specific Bayesian Model Averaging for Classification

Classification algorithms typically induce population-wide models that are trained to perform well on average on expected future instances. We introduce a Bayesian framework for learning instance-specific models from data that are optimized to predict well for a particular instance. Based on this framework, we present a lazy instance-specific algorithm called ISA that performs selective model a...

متن کامل

Multiple-Instance Case-Based Learning for Predictive Toxicology

Predictive toxicology is the task of building models capable of determining, with a certain degree of accuracy, the toxicity of chemical compounds. Machine Learning (ML) in general, and lazy learning techniques in particular, have been applied to the task of predictive toxicology. ML approaches differ in which kind of chemistry knowledge they use but all rely on some specific representation of ...

متن کامل

Learning to Complete Sentences

We consider the problem of predicting how a user will continue a given initial text fragment. Intuitively, our goal is to develop a “tab-complete” function for natural language, based on a model that is learned from text data. We consider two learning mechanisms that generate predictive models from collections of application-specific document collections: we develop an N-gram based completion m...

متن کامل

A Case Study in Machine Learning

Empirical machine learning develops methods for formulating predictive theories from observations, drawing on ideas from arti cial intelligence and statistics. This paper discusses examples of such methods in the context of modelling the biomedical activity of a family of compounds. Five approaches are compared: standard multivariate linear regression, piecewise linear models expressed as model...

متن کامل

Identifying Predictive Structures in Relational Data Using Multiple Instance Learning

This paper introduces an approach for identifying predictive structures in relational data using the multiple-instance framework. By a predictive structure, we mean a structure that can explain a given labeling of the data and can predict labels of unseen data. Multiple-instance learning has previously only been applied to flat, or propositional, data and we present a modification to the framew...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of machine learning research : JMLR

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2010